Love Has Won

WE ARE HERE AS HUMANITY'S TEAM AND MIRRORS OF LOVE. SO TOGETHER WE CAN BRING BACK UNITY AND PEACE TO THIS PLANET, AND RETURN TO OUR NATURAL STATE. 

We Are The First Contact Ground Crew Team, who are preparing to take Humanity Home Into The Light.

Space Weather Update: 01/21/2017

By Spaceweather.com, 01/21/2017

RADIATION CLOUDS AT AVIATION ALTITUDES: A new study published in the peer-reviewed journal Space Weather reports the discovery of radiation "clouds" at aviation altitudes. When airplanes fly through these clouds, dose rates of cosmic radiation normally absorbed by air travelers can double or more.

"We have flown radiation sensors onboard 264 research flights at altitudes as high as 17.3 km (56,700 ft) from 2013 to 2017," says Kent Tobiska, lead author of the paper and PI of the NASA-supported program Automated Radiation Measurements for Aerospace Safety (ARMAS). "On at least six occasions, our sensors have recorded surges in ionizing radiation that we interpret as analogous to localized clouds."

 

The fact that air travelers absorb radiation is not news.  Researchers have long known that cosmic rays crashing into Earth's atmosphere create a spray of secondary particles such as neutrons, protons, electrons, X-rays and gamma-rays that penetrate aircraft.  100,000 mile frequent flyers absorb as much radiation as 20 chest X-rays—and even a single flight across the USA can expose a traveler to more radiation than a dental X-ray.

Conventional wisdom says that dose rates should vary smoothly with latitude and longitude and the height of the aircraft.  Any changes as a plane navigates airspace should be gradual.  Tobiska and colleagues have found something quite different, however: Sometimes dose rates skyrocket for no apparent reason.

"We were quite surprised to see this," says Tobiska.

All of the surges they observed occurred at relatively high latitudes, well above 50 degrees in both hemispheres. One example offered in their paper is typical: On Oct 3, 2015, an NSF/NCAR research aircraft took off from southern Chile and flew south to measure the thickness of the Antarctic ice shelf.  Onboard, the ARMAS flight module recorded a 2x increase in ionizing radiation for about 30 minutes while the plane flew 11 km (36,000 feet) over the Antarctic Peninsula.  No solar storm was in progress.  The plane did not abruptly change direction or altitude.  Nevertheless, the ambient radiation environment changed sharply. Similar episodes have occurred off the coast of Washington state.

 

Above: Radiation measurements made by ARMAS while flying over Antarctica. The colored points are from ARMAS. The black points are from a NASA computer model (NAIRAS) predicting radiation dose rates. Throughout the flight, ARMAS observed higher dose rates than predicted by the model, including a surge highlighted in pink.

What's going on?

"We're not sure," says Tobiska, "but we have an idea."

Earth's magnetic field, he explains, traps many cosmic rays and solar energetic particles in structures called "magnetic bottles."  These bottles can be leaky.  Even minor gusts of solar wind can cause the trapped particles to squirt out the ends of the bottle, sending beams of particles down toward the Earth below.

"Basically, we think we might be flying through some of these leaky particle beams," says Tobiska.

Tobiska notes that a team of South Korean researchers has observed similar variations in radiation while flying sensors onboard a military aircraft near the border between the two Koreas (Lee et al 2015).  If the phenomena are the same, the Korean measurements would suggest that "radiation clouds" may exist at middle latitudes, too.

The ARMAS program has a busy flight schedule in 2017. "We'll be looking carefully for more 'clouds' as we continue to characterize the radiation environment at aviation altitudes," says Tobiska.

Stay tuned for updates and, meanwhile, read Tobiska et al's original research at this URL:  http://onlinelibrary.wiley.com/doi/10.1002/2016SW001419/abstract

Sharable permalink to this article: Radiation Clouds at Aviation Altitudes

Realtime Space Weather Photo Gallery

SUNSET IN THE STRATOSPHERE: Nothing says "I love you" like a bear from space. To raise money for their cosmic ray research program, the students of Earth to Sky Calculus have flown a payload-full of Valentine's bears to the edge of space. This was a special flight, timed to photograph the bears at sunset in the stratosphere, wrapped in the romantic light of the fading sun 98,000 feet above Earth's surface:

 

You can have one for $49.95. Each bear comes with a Valentine's card showing the bears in flight and telling the story of their trip to the stratosphere.

More far-out Valentine's gifts may be found in the Earth to Sky store. All proceeds support cosmic ray balloon flights and STEM education.

Realtime Aurora Photo Gallery

Realtime Airglow Photo Gallery

Realtime Sprite Photo Gallery

 All Sky Fireball Network

Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 20, 2017, the network reported 14 fireballs.
(14 sporadics)

 

 

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

 

 Near Earth Asteroids

Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.

On January 21, 2017 there were 1761 potentially hazardous asteroids.

Recent & Upcoming Earth-asteroid encounters:Asteroid

Date(UT)

Miss Distance

Size

2016 YC8

Jan 18

9.5 LD

52 m

2015 BB

Jan 18

13.8 LD

45 m

2002 LS32

Jan 24

53.9 LD

1.0 km

1991 VK

Jan 25

25.2 LD

1.9 km

2000 WN107

Jan 26

62.3 LD

2.8 km

2017 AK3

Jan 26

11.3 LD

52 m

2016 YP4

Jan 26

12.6 LD

18 m

2005 VL1

Feb 4

9.1 LD

18 m

2013 FK

Feb 5

7.1 LD

101 m

2014 DV110

Feb 10

9.8 LD

45 m

2015 QR3

Feb 12

13.1 LD

31 m

2013 WT67

Feb 17

44.2 LD

1.1 km

1992 FE

Feb 24

13.1 LD

275 m

1998 QK56

Feb 24

53 LD

1.2 km

2012 DR32

Mar 2

2.7 LD

52 m

Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.

 Cosmic Rays in the Atmosphere

 

Readers, thank you for your patience while we continue to develop this new section of Spaceweather.com. We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:

 

This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.

What is this all about? Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed cloudstrigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1#2#3#4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 12% since 2015:

 

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.

 

Current Conditions

Solar wind
speed: 500.5 km/sec
density: 5.0 protons/cm3

more data: ACEDSCOVR
Updated: Today at 1521 UTX-ray Solar Flares
6-hr max: C6
1108 UT Jan21
24-hr: C9 0726 UT Jan21
explanation | more data
Updated: Today at: 1500 UTDaily Sun: 21 Jan 17Sunspots AR2625 and AR2626 have stable magnetic fields that pose no threat for strong flares. Credit: SDO/HMI

Sunspot number: 61
What is the sunspot number?
Updated 20 Jan 2017

Spotless Days
Current Stretch: 0 days
2017 total: 10 days (53%)
2016 total: 32 days (9%) 
2015 total: 0 days (0%) 

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 20 Jan 2017

The Radio Sun
10.7 cm flux: 80 sfu

explanation | more data
Updated 20 Jan 2017

Current Auroral Oval:

 

Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 1 quiet
24-hr max: Kp= 3
quiet
explanation | more data
Interplanetary Mag. Field
Btotal: 6.2 nT
Bz: 2.2 nT north

more data: ACEDSCOVR
Updated: Today at 1520 UTCoronal Holes: 20 Jan 17
Earth is inside a stream of solar wind flowing from the indicated coronal hole. Credit: NASA/SDO.Noctilucent Clouds The southern season for noctilucent clouds began on Nov. 17, 2016. Come back to this spot every day to see the "daily daisy" from NASA's AIM spacecraft, which is monitoring the dance of electric-blue around the Antarctic Circle.

 

Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 01-20-2017 22:55:02

SPACE WEATHER
NOAA Forecasts

Updated at: 2017 Jan 20 2200 UTC

FLARE

0-24 hr

24-48 hr

CLASS M

01 %

01 %

CLASS X

01 %

01 %

Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: activeminor stormsevere stormUpdated at: 2017 Jan 20 2200 UTCMid-latitudes

0-24 hr

24-48 hr

ACTIVE

15 %

10 %

MINOR

05 %

01 %

SEVERE

01 %

01 %

High latitudes

0-24 hr

24-48 hr

ACTIVE

20 %

20 %

MINOR

25 %

25 %

SEVERE

20 %

15 %

Space Weather Update: 01/20/2017

By Spaceweather.com, 01/20/2017

CHANCE OF STORMS: NOAA forecasters say there is a 40% chance of polar geomagnetic storms on Jan. 20th as a solar wind stream gently buffets Earth's magnetic field. Arctic sky watchers should remain alert for auroras on Friday night. Free: Aurora Alerts

RARE DOUBLE SUN HALO: Earlier this week, a winter storm passed through Fairbanks, Alaska. In its wake, "it left a lot of ice crystals in the air," says resident Bernard Marschner. "We had a beautiful display of sun halos--including this double halo on Jan. 17th."

 

The inner ring is a common 22 degree sun halo, caused by sunlight shining through ice crystals shaped like hexagonal prisms.  The outer ring is something more exotic.

"It is a 46 degree halo," explains atmospheric optics expert Les Cowley. "They are more rare than many text books and websites would have you believe."

Both 22 and 46 degree halos are caused by the same hexagonal prism ice crystals, but the 46 degree halo is almost always too faint to see.  When you see an outer ring, it is usually something else: "A supralateral arc," says Cowley. "These are caused by hexagonal column crystals aligned horizontally in the air and can masquerade as a 46 degree halo."

Marschnet's sighting was the real thing. "We might get more tomorrow with the temperatures supposed to fall to -50 F," he says. Browse the gallery for sightings!

Realtime Space Weather Photo Gallery

VENUS IN A DROP OF WATER: Recipe for a great photo: Splatter a pane of glass with droplets of water. Place the glass in front of the sunset. Point a camera at the droplets and--click!

 

Photographer John Bell of Haversham, Bucks, UK followed the recipe and obtained the picture above on Jan. 17, 2017.

"I had been looking at macro photos of flowers through droplets and thought I'd try the same with the evening sky," explains Bell. "I taped a photoframe glass to a tree branch in my garden and framed the droplets using my Canon 5D MK2 with a sigma 106mm macro lens. The view was of Venus by a neighbour's tree."

Water droplets act as inverting lenses, so in the original photo the sunset was upside down. "Easily fixed," says Bell, who restored order by rotating the image 180 degrees. "Focusing was a bit difficult," he adds. "After all, water droplets are not perfect lenses." The result, however, was perfectly beautiful. More exposures are available here.

Realtime Space Weather Photo Gallery

FAR-OUT VALENTINE'S GIFT: For the past two years, Spaceweather.com and the students of Earth to Sky Calculus have been launching balloons to keep track of surging cosmic rays in the atmosphere. Our radiation monitoring program receives no support from corporate sponsors or government grants. Instead, we are crowd-funded. To that end, we offer for your consideration a truly far-out Valentine's gift:

 

On Dec. 18, 2016, the students of Earth to Sky Calculus flew 30 of these pendants to the stratosphere. You can have one for $69.95--including the rose, which has been pressed for safekeeping. Each order comes with a Valentine's card showing the pendant+rose in flight and telling the story of their trip to the stratosphere.

More out of this world gifts may be found in the Earth to Sky store. All proceeds support cosmic ray balloon flights and STEM education.

Realtime Aurora Photo Gallery

Realtime Airglow Photo Gallery

Realtime Sprite Photo Gallery

 All Sky Fireball Network

Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 20, 2017, the network reported 14 fireballs.
(14 sporadics)

 

 

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

 

 Near Earth Asteroids

Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.

On January 20, 2017 there were potentially hazardous asteroids.

Recent & Upcoming Earth-asteroid encounters:Asteroid

Date(UT)

Miss Distance

Size

2016 YC8

Jan 18

9.5 LD

52 m

2015 BB

Jan 18

13.8 LD

45 m

2002 LS32

Jan 24

53.9 LD

1.0 km

1991 VK

Jan 25

25.2 LD

1.9 km

2000 WN107

Jan 26

62.3 LD

2.8 km

2017 AK3

Jan 26

11.3 LD

52 m

2016 YP4

Jan 26

12.6 LD

18 m

2005 VL1

Feb 4

9.1 LD

18 m

2013 FK

Feb 5

7.1 LD

101 m

2014 DV110

Feb 10

9.8 LD

45 m

2015 QR3

Feb 12

13.1 LD

31 m

2013 WT67

Feb 17

44.2 LD

1.1 km

1992 FE

Feb 24

13.1 LD

275 m

1998 QK56

Feb 24

53 LD

1.2 km

2012 DR32

Mar 2

2.7 LD

52 m

Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.

 Cosmic Rays in the Atmosphere

 

Readers, thank you for your patience while we continue to develop this new section of Spaceweather.com. We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:

 

This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.

What is this all about? Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed cloudstrigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1#2#3#4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 12% since 2015:

 

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.

 

Current Conditions

Solar wind
speed: 505.4 km/sec
density: 2.6 protons/cm3

more data: ACEDSCOVR
Updated: Today at 1546 UTX-ray Solar Flares
6-hr max: B5
1046 UT Jan20
24-hr: B5 1046 UT Jan20
explanation | more data
Updated: Today at: 1500 UTDaily Sun: 20 Jan 17Sunspots AR2625 and AR2626 have stable magnetic fields that pose no threat for strong flares. Credit: SDO/HMI

Sunspot number: 26
What is the sunspot number?
Updated 20 Jan 2017

Spotless Days
Current Stretch: 0 days
2017 total: 10 days (53%)
2016 total: 32 days (9%) 
2015 total: 0 days (0%) 

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 20 Jan 2017

The Radio Sun
10.7 cm flux: 80 sfu

explanation | more data
Updated 20 Jan 2017

Current Auroral Oval:

 

Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 2 quiet
24-hr max: Kp= 3
quiet
explanation | more data
Interplanetary Mag. Field
Btotal: 5.2 nT
Bz: 0.5 nT north

more data: ACEDSCOVR
Updated: Today at 1545 UTCoronal Holes: 20 Jan 17
Earth is inside a stream of solar wind flowing from the indicated coronal hole. Credit: NASA/SDO.Noctilucent Clouds The southern season for noctilucent clouds began on Nov. 17th. Come back to this spot every day to see the "daily daisy" from NASA's AIM spacecraft, which is monitoring the dance of electric-blue around the Antarctic Circle.

 

Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 01-19-2017 23:55:03

SPACE WEATHER
NOAA Forecasts

Updated at: 2017 Jan 19 2200 UTC

FLARE

0-24 hr

24-48 hr

CLASS M

01 %

01 %

CLASS X

01 %

01 %

Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: activeminor stormsevere stormUpdated at: 2017 Jan 19 2200 UTCMid-latitudes

0-24 hr

24-48 hr

ACTIVE

30 %

30 %

MINOR

10 %

10 %

SEVERE

01 %

01 %

High latitudes

0-24 hr

24-48 hr

ACTIVE

15 %

15 %

MINOR

30 %

30 %

SEVERE

40 %

40 %

Space Weather Update: 01/19/2017

By Spaceweather.com, 01/19/2017

ENTERING THE SOLAR WIND STREAM: Earth is entering a stream of fast-moving solar wind flowing from a large hole in the sun's atmosphere. This is causing the Arctic Circle to glow with green auroras--a hue that could intensify as our planet moves deeper into the stream on Jan. 19th.  NOAA forecasters estimate a 60% chance of G1-class geomagnetic storms during the next 24 hours. Free: Aurora Alert

VENUS IN A DROP OF WATER: Recipe for a great photo: Splatter a pane of glass with droplets of water. Place the glass in front of the sunset. Point a camera at the droplets and--click!

 

Photographer John Bell of Haversham, Bucks, UK followed the recipe and obtained the picture above on Jan. 17, 2017.

"I had been looking at macro photos of flowers through droplets and thought I'd try the same with the evening sky," explains Bell. "I taped a photoframe glass to a tree branch in my garden and framed the droplets using my Canon 5D MK2 with a sigma 106mm macro lens. The view was of Venus by a neighbour's tree."

Water droplets act as inverting lenses, so in the original photo the sunset was upside down. "Easily fixed," says Bell, who restored order by rotating the image 180 degrees. "Focusing was a bit difficult," he adds. "After all, water droplets are not perfect lenses." The result, however, was perfectly beautiful. More exposures are available here.

Realtime Space Weather Photo Gallery

FAR-OUT VALENTINE'S GIFT: For the past two years, Spaceweather.com and the students of Earth to Sky Calculus have been launching balloons to keep track of surging cosmic rays in the atmosphere. Our radiation monitoring program receives no support from corporate sponsors or government grants. Instead, we are crowd-funded. To that end, we offer for your consideration a truly far-out Valentine's gift:

 

On Dec. 18, 2016, the students of Earth to Sky Calculus flew 30 of these pendants to the stratosphere. You can have one for $69.95--including the rose, which has been pressed for safekeeping. Each order comes with a Valentine's card showing the pendant+rose in flight and telling the story of their trip to the stratosphere.

More out of this world gifts may be found in the Earth to Sky store. All proceeds support cosmic ray balloon flights and STEM education.

EARTH'S MAGNETIC FIELD RINGS LIKE A BELL: In the Lofoten Islands of Norway, Spaceweather.com reader Rob Stammes operates a magnetic observatory. Twenty-four hours a day, he measures the strength and direction of the local magnetic field as well as electrical currents running through the ground. During geomagnetic storms, his chart recordings go haywire. On Jan. 13th, something different happened. They rang like a bell:

 

"For about an hour, electrical currents in the ground beneath my observatory flowed back and forth with a sinusoidal period near 2 minutes," says Stammes. "This is rare."

These are natural ultra-low frequency oscillations known to researchers as "pulsations continuous" (Pc). The physics is familiar to anyone who has studied bells or resonant cavities. Earth's magnetic field carves out a cavity in the surrounding solar wind. Gusts of solar wind can make the cavity "ring" akin to a bell (references: #1#2#3). Human ears cannot hear this ringing; it is electromagnetic rather than acoustic. The physical effect is felt beneath our feet. As the cavity vibrates, magnetic fields swing back and forth, causing electrical currents to flow through the ground below.

The Pc waves Stammes detected are a variety known as Pc4, which oscillate in the frequency range 6.7–22 mHz. Such waves are good at energizing particles trapped in Earth's magnetic field and often cause local outbursts of bright auroras.

Realtime Aurora Photo Gallery

Realtime Airglow Photo Gallery

Realtime Sprite Photo Gallery

 All Sky Fireball Network

Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 19, 2017, the network reported 8 fireballs.
(8 sporadics)

 

 

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

 

 Near Earth Asteroids

Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.

On January 19, 2017 there were 1761 potentially hazardous asteroids.

Recent & Upcoming Earth-asteroid encounters:Asteroid

Date(UT)

Miss Distance

Size

2016 YC8

Jan 18

9.5 LD

52 m

2015 BB

Jan 18

13.8 LD

45 m

2002 LS32

Jan 24

53.9 LD

1.0 km

1991 VK

Jan 25

25.2 LD

1.9 km

2000 WN107

Jan 26

62.3 LD

2.8 km

2017 AK3

Jan 26

11.3 LD

52 m

2016 YP4

Jan 26

12.7 LD

18 m

2005 VL1

Feb 4

9.1 LD

18 m

2013 FK

Feb 5

7.1 LD

101 m

2014 DV110

Feb 10

9.8 LD

45 m

2015 QR3

Feb 12

13.1 LD

31 m

2013 WT67

Feb 17

44.2 LD

1.1 km

1992 FE

Feb 24

13.1 LD

275 m

1998 QK56

Feb 24

53 LD

1.2 km

2012 DR32

Mar 2

2.7 LD

52 m

Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.

 Cosmic Rays in the Atmosphere

 

Readers, thank you for your patience while we continue to develop this new section of Spaceweather.com. We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:

 

This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.

What is this all about? Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed cloudstrigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1#2#3#4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 12% since 2015:

 

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.

 

Current Conditions

Solar wind
speed: 591.0 km/sec
density: 3.7 protons/cm3

more data: ACEDSCOVR
Updated: Today at 1640 UTX-ray Solar Flares
6-hr max: A9
1210 UT Jan19
24-hr: A9 0749 UT Jan19
explanation | more data
Updated: Today at: 1600 UTDaily Sun: 19 Jan 17Sunspots AR2625 and AR2626 have stable magnetic fields that pose no threat for strong flares. Credit: SDO/HMI

Sunspot number: 25
What is the sunspot number?
Updated 19 Jan 2017

Spotless Days
Current Stretch: 0 days
2017 total: 10 days (56%)
2016 total: 32 days (9%) 
2015 total: 0 days (0%) 

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 19 Jan 2017

The Radio Sun
10.7 cm flux: 79 sfu

explanation | more data
Updated 19 Jan 2017

Current Auroral Oval:

 

Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 2 quiet
24-hr max: Kp= 4
unsettled
explanation | more data
Interplanetary Mag. Field
Btotal: 5.2 nT
Bz: 2.9 nT north

more data: ACEDSCOVR
Updated: Today at 1640 UTCoronal Holes: 19 Jan 17
Earth is entering a stream of solar wind flowing from the indicated coronal hole. Credit: NASA/SDO.Noctilucent Clouds The southern season for noctilucent clouds began on Nov. 17th. Come back to this spot every day to see the "daily daisy" from NASA's AIM spacecraft, which is monitoring the dance of electric-blue around the Antarctic Circle.

 

Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 01-18-2017 18:55:04

SPACE WEATHER
NOAA Forecasts

Updated at: 2017 Jan 18 2200 UTC

FLARE

0-24 hr

24-48 hr

CLASS M

01 %

01 %

CLASS X

01 %

01 %

Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: activeminor stormsevere stormUpdated at: 2017 Jan 18 2200 UTCMid-latitudes

0-24 hr

24-48 hr

ACTIVE

45 %

30 %

MINOR

25 %

10 %

SEVERE

05 %

01 %

High latitudes

0-24 hr

24-48 hr

ACTIVE

10 %

15 %

MINOR

30 %

25 %

SEVERE

60 %

40 %