Love Has Won

WE ARE HERE AS HUMANITY'S TEAM AND MIRRORS OF LOVE. SO TOGETHER WE CAN BRING BACK UNITY AND PEACE TO THIS PLANET, AND RETURN TO OUR NATURAL STATE. 

We Are The First Contact Ground Crew Team, who are preparing to take Humanity Home Into The Light.

Space Weather Update: 01/15/2017

By Spaceweather.com, 01/15/2017

THE END OF IRIDIUM FLARES: Backyard astronomers have long enjoyed the sight of "Iridium flares," supernova-like flashes in the sky caused by sunlight glinting from Iridium satellite antennas.  Soon, these flares will come to an end. Earlier today, a SpaceX rocket launched the first batch of Iridium NEXT satellites, successors to the original Iridiums. They do not have the same antenna configuration and will not produce the same bright flares.  Once the original constellation is de-orbited the flashes will cease. "I'm afraid those who've been tracking that phenomenon over the past 20 years have another year or two to see it," said Iridium CEO Matt Desch in an article from the BBC.

SOLAR WIND, INCOMING: A wide hole in the sun's atmosphere is spewing a fan-shaped stream of solar wind toward Earth.  NASA's Solar Dynamics Observatory photographed the canyon-like structure on Jan. 14th:

 

This is a "coronal hole" (CH)--a region where the sun's magnetic field opens up and allows solar wind to escape.  Material is flowing from this coronal hole at speeds exceeding 600 km/s (1.3 million mph).  The high-speed stream could spark G1-class geomagnetic storms when it arrives on Jan. 18-19.  Arctic sky watchers, mark your calendars! Free: Aurora Alerts

Realtime Aurora Photo Gallery

ATMOSPHERIC RADIATION MONITORING: As the solar cycle transitions to a new phase, cosmic rays are penetrating the solar system in ever increasing numbers.  Cosmic rays can seed clouds, trigger lightning, and penetrate commercial airplanes.  This means it is increasingly important to monitor radiation in Earth's atmosphere. Spaceweather.com and the students of Earth to Sky Calculus have developed a "Space Weather Buoy" to do just that. A peer-reviewed research article describing the device was just featured on the cover of the American Geophysical Union magazine Space Weather Quarterly:

 

Download the entire issue and scroll down to page 10 to read the complete article. It was co-authored by 12 students, most of whom were in high school when the research was done. Highlights of the article include a detailed description of the buoy as well as measurements of several radiation events over California in response to solar activity.

Our radiation monitoring program receives no support from corporate sponsors or government grants. Instead, we are crowd-funded. Or rather ... bear-funded:

 

Sales of Valentine's gifts like these space bears support our research. All proceeds support cosmic ray balloon launches and STEM education.

Get a pair for yourself. They're only $69.95--including the rose, which has been pressed for safekeeping. Each adorable duo comes with Valentine's card showing the bears in flight and certifying their trip to the stratosphere. More out of this world gifts may be found in the Earth to Sky store

Realtime Space Weather Photo Gallery

Realtime Airglow Photo Gallery

Realtime Sprite Photo Gallery

 All Sky Fireball Network

Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on Spaceweather.com.

On Jan. 15, 2017, the network reported 3 fireballs.
(3 sporadics)

 

 

In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]

 

 Near Earth Asteroids

Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.

On January 15, 2017 there were 1759 potentially hazardous asteroids.

Recent & Upcoming Earth-asteroid encounters:Asteroid

Date(UT)

Miss Distance

Size

2017 AG13

Jan 9

0.5 LD

27 m

2017 AT4

Jan 9

11 LD

20 m

2017 AM13

Jan 10

14.8 LD

43 m

2017 AJ13

Jan 14

6.7 LD

63 m

2016 YC8

Jan 18

9.5 LD

52 m

2015 BB

Jan 18

13.8 LD

45 m

2002 LS32

Jan 24

53.9 LD

1.0 km

1991 VK

Jan 25

25.2 LD

1.9 km

2000 WN107

Jan 26

62.3 LD

2.8 km

2017 AK3

Jan 26

11.3 LD

49 m

2016 YP4

Jan 26

12.7 LD

17 m

2005 VL1

Feb 4

9.1 LD

18 m

2013 FK

Feb 5

7.1 LD

94 m

2014 DV110

Feb 10

9.8 LD

45 m

2015 QR3

Feb 12

13.1 LD

31 m

2013 WT67

Feb 17

44.2 LD

1.1 km

1992 FE

Feb 24

13.1 LD

275 m

1998 QK56

Feb 24

53 LD

1.3 km

2012 DR32

Mar 2

2.7 LD

52 m

Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.

 Cosmic Rays in the Atmosphere

 

Readers, thank you for your patience while we continue to develop this new section of Spaceweather.com. We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:

 

This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.

What is this all about? Approximately once a week, Spaceweather.com and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed cloudstrigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1#2#3#4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 12% since 2015:

 

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.

 

Current Conditions

Solar wind
speed: 322.3 km/sec
density: 7.8 protons/cm3

more data: ACEDSCOVR
Updated: Today at 1601 UTX-ray Solar Flares
6-hr max: A7
1019 UT Jan15
24-hr: B1 0334 UT Jan15
explanation | more data
Updated: Today at: 1600 UTDaily Sun: 15 Jan 17Sunspots AR2625 and AR2626 have stable magnetic fields that pose no threat for strong flares. Credit: SDO/HMI

Sunspot number: 25
What is the sunspot number?
Updated 15 Jan 2017

Spotless Days
Current Stretch: 0 days
2017 total: 10 days (71%)
2016 total: 32 days (9%) 
2015 total: 0 days (0%) 

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 15 Jan 2017

The Radio Sun
10.7 cm flux: 75 sfu

explanation | more data
Updated 15 Jan 2017

Current Auroral Oval:

 

Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 1 quiet
24-hr max: Kp= 2
quiet
explanation | more data
Interplanetary Mag. Field
Btotal: 4.3 nT
Bz: -2.8 nT south

more data: ACEDSCOVR
Updated: Today at 1600 UTCoronal Holes: 15 Jan 17
Solar wind flowing from this broad coronal hole should reach Earth on or about Jan 18th. Credit: NASA/SDO.Noctilucent Clouds The southern season for noctilucent clouds began on Nov. 17th. Come back to this spot every day to see the "daily daisy" from NASA's AIM spacecraft, which is monitoring the dance of electric-blue around the Antarctic Circle.

 

Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 01-14-2017 15:55:03

SPACE WEATHER
NOAA Forecasts

Updated at: 2017 Jan 14 2200 UTC

FLARE

0-24 hr

24-48 hr

CLASS M

01 %

01 %

CLASS X

01 %

01 %

Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: activeminor stormsevere stormUpdated at: 2017 Jan 14 2200 UTCMid-latitudes

0-24 hr

24-48 hr

ACTIVE

05 %

05 %

MINOR

05 %

05 %

SEVERE

01 %

01 %

High latitudes

0-24 hr

24-48 hr

ACTIVE

15 %

15 %

MINOR

10 %

10 %

SEVERE

15 %

15 %