Love Has Won


We Are The First Contact Ground Crew Team, who are preparing to take Humanity Home Into The Light.

Space Weather Update: 12/31/2016

By, 12/31/2016

LAST AURORAS OF 2016? NOAA forecasters estimate a 55% chance of polar geomagnetic storms on Dec.31st when a stream of solar wind is expected to hit Earth's magnetic field with wind speeds topping 600 km/s. Artic sky watchers should be alert for auroras. Happy New Year! Free: Aurora Alerts.

AURORA 'BLASTER FIRE' RECORDED IN SWEDEN: For centuries, Arctic sky watchers have occasionally reported strange sounds filling the air as Northern Lights danced overhead. Hisses, crackles, and even loud "claps" have been heard and recorded. It may be time to add a new sound to the menagerie: blaster fire.

Photographer Oliver Wright sends this report from inside the Arctic Circle: "On Christmas Night 2016, I was standing beneath an intense display of auroras in Abisko, Sweden, when I heard something that sounded like Star Wars blasters." As the lights danced overhead, a series of rat-a-tat 'swooshes' emanated from a nearby set of power lines.  "Other bystanders heard it, too," he says. "I rushed closer to the power lines and was able to record a sample using my iPhone."

To listen, click on the photo–and don't forget to turn up the volume:


Wright says that the sounds waxed and waned in sync with the auroras overhead; the brighter the lights, the louder the sounds. Distance mattered, too:  "The sounds grew louder as I approached the power lines, and fainter as I moved away."

Wright is a veteran tour guide working for Lights over Lapland, and he has heard these sounds before–"three times in total. Each time I was standing near power lines." He recalls a particularly intense outburst of "blaster fire" during the powerful St. Patrick's Day Storm of March 2015. In each case, guests and/or friends heard the sounds as well.

What's going on?

"Aurora sounds" have long been a controversial topic.  Some researchers insist that they exist only in the imagination of the listener, but there is growing evidence that they are real.

Twas the night before Christmas. Read Oliver Wright's aurora blog.

Perhaps the most commonly reported aurora sounds are "hissing" and "crackling," a bit like static on a radio.  These are thought to come from electric fields causing spark discharges at the pointy ends of objects like pine needles or even strands of dry hair.  Aurora "claps" have been recorded as well.  A researcher in Finland spent 15 years studying this phenomenon and published his results in 2012.  He found that a temperature inversion layer in the atmosphere about 70 meters above the ground could cause a separation of + and – charges in the air. During strong geomagnetic storms, the charge separation breaks down, causing air to move and a "clap" to be heard.

The sounds Wright recorded may be a result of "electrophonic transduction"–that is, the conversion of electromagnetic energy into mechanical motion. At the time of the Christmas aurora outburst, magnetic fields around Abisko were seething with activity.  Physics 101: Unsettled magnetic fields can cause currents to flow in power lines.  Strong low-frequency currents can literally shake objects, launching acoustic vibrations into the air.  Wright may have recorded the unique sound of those power lines swaying in response to the magnetic storm.

"This discussion feels poignant with the passing of Carrie Fisher as she was my childhood love and the sound is very reminiscent of Star Wars," notes Wright.

Indeed, "Carrie's Crackles" might be a good name for these heavenly sounds. Around Abisko, people will be listening for more as the next magnetic storm approaches.  Stay tuned!

Realtime Aurora Photo Gallery

Realtime Space Weather Photo Gallery

Realtime Airglow Photo Gallery

Realtime Sprite Photo Gallery

 All Sky Fireball Network

Every night, a network of NASA all-sky cameras scans the skies above the United States for meteoritic fireballs. Automated software maintained by NASA's Meteoroid Environment Office calculates their orbits, velocity, penetration depth in Earth's atmosphere and many other characteristics. Daily results are presented here on

On Dec. 31, 2016, the network reported 7 fireballs.
(6 sporadics, 1 December Leonis Minorid)



In this diagram of the inner solar system, all of the fireball orbits intersect at a single point--Earth. The orbits are color-coded by velocity, from slow (red) to fast (blue). [Larger image] [movies]


 Near Earth Asteroids

Potentially Hazardous Asteroids (PHAs) are space rocks larger than approximately 100m that can come closer to Earth than 0.05 AU. None of the known PHAs is on a collision course with our planet, although astronomers are finding new ones all the time.

On December 31, 2016 there were 1755 potentially hazardous asteroids.

Recent & Upcoming Earth-asteroid encounters:Asteroid


Miss Distance


2016 YR

Dec 27

7.2 LD

16 m

2016 YM3

Dec 29

4.4 LD

18 m

2016 YH3

Dec 31

14.6 LD

52 m

2016 YB8

Jan 4

11.7 LD

56 m

2016 YK

Jan 8

13.5 LD

80 m

2016 YC8

Jan 18

9.4 LD

52 m

2015 BB

Jan 18

13.8 LD

45 m

2002 LS32

Jan 24

53.9 LD

1.0 km

1991 VK

Jan 25

25.2 LD

1.9 km

2000 WN107

Jan 26

62.3 LD

2.8 km

2016 YP4

Jan 26

12.7 LD

18 m

2005 VL1

Feb 4

9.1 LD

18 m

2013 FK

Feb 5

7.1 LD

94 m

2014 DV110

Feb 10

9.8 LD

45 m

2015 QR3

Feb 12

13.1 LD

31 m

2013 WT67

Feb 17

44.2 LD

1.1 km

1992 FE

Feb 24

13.1 LD

275 m

Notes: LD means "Lunar Distance." 1 LD = 384,401 km, the distance between Earth and the Moon. 1 LD also equals 0.00256 AU. MAG is the visual magnitude of the asteroid on the date of closest approach.

 Cosmic Rays in the Atmosphere


Readers, thank you for your patience while we continue to develop this new section of We've been working to streamline our data reduction, allowing us to post results from balloon flights much more rapidly, and we have developed a new data product, shown here:


This plot displays radiation measurements not only in the stratosphere, but also at aviation altitudes. Dose rates are expessed as multiples of sea level. For instance, we see that boarding a plane that flies at 25,000 feet exposes passengers to dose rates ~10x higher than sea level. At 40,000 feet, the multiplier is closer to 50x. These measurements are made by our usual cosmic ray payload as it passes through aviation altitudes en route to the stratosphere over California.

What is this all about? Approximately once a week, and the students of Earth to Sky Calculus fly space weather balloons to the stratosphere over California. These balloons are equipped with radiation sensors that detect cosmic rays, a surprisingly "down to Earth" form of space weather. Cosmic rays can seed cloudstrigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1#2#3#4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population. Our latest measurements show that cosmic rays are intensifying, with an increase of more than 12% since 2015:


Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth's magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth's atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered the maximum using balloons in the 1930s and it is what we are measuring today.


Current Conditions

Solar wind
speed: 556.2 km/sec
density: 7.8 protons/cm3

more data: ACEDSCOVR
Updated: Today at 1930 UTX-ray Solar Flares
6-hr max: A7
1827 UT Dec31
24-hr: B2 0350 UT Dec31
explanation | more data
Updated: Today at: 1900 UTDaily Sun: 31 Dec 16Tiny sunspot 2622 poses no threat for strong solar flares. Credit: SDO/HMI

Sunspot number: 11
What is the sunspot number?
Updated 31 Dec 2016

Spotless Days
Current Stretch: 0 days
2016 total: 32 days (8%) 
2015 total: 0 days (0%) 

2014 total: 1 day (<1%)
2013 total: 0 days (0%)
2012 total: 0 days (0%)
2011 total: 2 days (<1%)
2010 total: 51 days (14%)
2009 total: 260 days (71%)

Updated 31 Dec 2016

The Radio Sun
10.7 cm flux: 74 sfu

explanation | more data
Updated 31 Dec 2016

Current Auroral Oval:


Switch to: Europe, USA, New Zealand, Antarctica
Credit: NOAA/OvationPlanetary K-index
Now: Kp= 3 quiet
24-hr max: Kp= 3
explanation | more data
Interplanetary Mag. Field
Btotal: 7.7 nT
Bz: 2.2 nT south

more data: ACEDSCOVR
Updated: Today at 1929 UTCoronal Holes: 31 Dec 16
Solar wind flowing from this coronal hole should reach Earth on Dec.31-Jan.1. Credit: NASA/SDO.Noctilucent Clouds The southern season for noctilucent clouds began on Nov. 17th. Come back to this spot every day to see the "daily daisy" from NASA's AIM spacecraft, which is monitoring the dance of electric-blue around the Antarctic Circle.


Switch view: Ross Ice Shelf, Antarctic Peninsula, East Antarctica, PolarUpdated at: 12-30-2016 16:55:03

NOAA Forecasts

Updated at: 2016 Dec 30 2200 UTC


0-24 hr

24-48 hr


01 %

01 %


01 %

01 %

Geomagnetic Storms:
Probabilities for significant disturbances in Earth's magnetic field are given for three activity levels: activeminor stormsevere stormUpdated at: 2016 Dec 30 2200 UTCMid-latitudes

0-24 hr

24-48 hr


35 %

30 %


25 %

15 %


05 %

01 %

High latitudes

0-24 hr

24-48 hr


10 %

15 %


25 %

20 %


55 %

30 %